Quasi-Exactly Solvable N -Body Spin Hamiltonians with Short-Range Interaction Potentials
نویسندگان
چکیده
We review some recent results on quasi-exactly solvable spin models presenting near-neighbors interactions. These systems can be understood as cyclic generalizations of the usual Calogero–Sutherland models. A nontrivial modification of the exchange operator formalism is used to obtain several infinite families of eigenfunctions of these models in closed form.
منابع مشابه
ua nt - p h / 03 06 16 2 v 1 2 4 Ju n 20 03 Quasi exactly solvable ( QES ) equations with multiple algebraisations ∗
We review three examples of quasi exactly solvable (QES) Hamitonians which possess multiple algebraisations. This includes the most prominent example, the Lamé equation, as well as recently studied many-body Hamiltonians with Weierstrass interaction potential and finally, a 2× 2 coupled channel Hamiltonian.
متن کاملX iv : h ep - t h / 98 10 04 5 v 1 7 O ct 1 99 8 TPI - MINN - 98 / 04 Quasi - Exactly Solvable Models with Spin - Orbital Interaction
First examples of quasi-exactly solvable models describing spin-orbital interaction are constructed. In contrast with other examples of matrix quasi-exactly solvable models discussed in the literature up to now, our models admit infinite (but still incomplete) sets of exact (algebraic) solutions. The hamiltonians of these models are hermitian operators of the form H = −∆ +V1(r)+ (s · l)V2(r)+ (...
متن کاملAN-type Dunkl operators and new spin Calogero–Sutherland models
A new family of AN -type Dunkl operators preserving a polynomial subspace of finite dimension is constructed. Using a general quadratic combination of these operators and the usual Dunkl operators, several new families of exactly and quasi-exactly solvable quantum spin Calogero–Sutherland models are obtained. These include, in particular, three families of quasi-exactly solvable elliptic spin H...
متن کاملua nt - p h / 02 01 10 0 v 1 2 2 Ja n 20 02 A General Approach of Quasi - Exactly Solvable Schrödinger Equations
We construct a general algorithm generating the analytic eigenfunctions as well as eigen-values of one-dimensional stationary Schrödinger Hamiltonians. Both exact and quasi-exact Hamiltonians enter our formalism but we focus on quasi-exact interactions for which no such general approach has been considered before. In particular we concentrate on a generalized sextic oscillator but also on the L...
متن کاملFe b 19 96 Quasi - Exactly Solvable Models and W - Algebras
The relationship between the quasi-exactly solvable problems and W-algebras is revealed. This relationship enabled one to formulate a new general method for building multi-dimensional and multi-channel exactly and quasi-exactly solvable models with hermitian hamiltonians. The method is based on the use of multi-parameter spectral differential equations constructable from generators of finite-di...
متن کامل